COORDINATION COMPOUNDS OF SOME SCANDIUM SALTS WITH 4-BUTYROLACTAM AND 8-CAPRYLOLACTAM

B.DUŠEK, F.KŮTEK and V.KOHOUT

Department of Inorganic Chemistry, Institute of Chemical Technology 166 28 Prague 6

Received July 29th, 1974

Coordination compounds of scandium salts with 4-butyrolactam and 8-caprylolactam were prepared and their stoichiometric composition determined. The compounds prepared have been studied using TGA, DTA, X-ray method, and infrared spectroscopy. The conductivity measurements were made and molecular weights determined by cryoscopic method. All the compounds quoted were found to be anhydrous and lactams are in them coordinated through the oxygen atom of the C==O group.

A great attention has been recently given to the study of coordinated compounds in which lactams are present in terms of ligands. Complexes both with transition¹⁻³ and intransition⁴⁻⁶ elements were prepared. The coordination compounds with lactams are of interest not only from the theoretical point of view, but also because of the practical application in the purification process of lactams, or in terms of a modifying or catalyzing component in the polymerizations of lactams^{5,7}. Lactams with lower number of carbon atoms, primarily 4-butyrolactam^{1,3,6}, were mainly used as ligands. In all the cases studied, lactams behaved as single-bonded ligands, linked to a central atom by means of the oxygen atom of the C=O group. When preparing the complexes, the authors started either from anhydrous salts and benzene or ethyl alcohol solutions^{3,4} of lactam, or if the hydrates had to be employed, the latter were beforehand dehydrated with 2,2-dimethoxypropane^{2,8}. None of the papers quoted deals with complexes of scandium, and 8-caprylolactam as ligand was used only in the paper of Hart and Davis⁸.

EXPERIMENTAL

Reagents

In order to prepare coordination compounds, crystalline hydrated salts $Sc(ClO_4)_3.7 H_2O$, $Sc(NO_3)_3.4 H_2O$, $ScCl_3.6 H_2O$, and $ScBr_3.6 H_2O$ were used. The compounds were obtained by dissolution of scandium oxide (99.5%) in excess of relevant concentrated acids of the A.R. grade and by subsequent crystallization. The salts were analyzed for scandium and anion contents before use. Scandium thiocyanate was not prepared in terms of a solid, but its ether solution was made use of, obtained by extraction from a water solution of scandium trichloride and ammonium thiocyanate.

2570

Compound	% Sc		% C		% H	
 Compound -	calc.	found	calc.	found	calc.	found
Ι	5.26	5.16	33.7	33.7	4.93	5.00
II	6.85	6.85	36.6	37.9	5.33	5.38
III	9.14	8.85	39.0	38.5	5.68	5.92
IV	5.65	5.60	36.4	35.1	5.28	5.47
V	8.05	8.06	40.7	40.0	5.04	5.04
VI	3.77	3.80	4 8·4	47.5	7.56	7.40
VII	4.80	4.92	51-2	51.2	8.06	8-05
VIII	6.28	6.20	53.6	54.2	8.38	8.28
IX	4.53	4.52	48.5	46.5	7.56	7.65
Х	5.74	6.12	49.1	49.8	7.71	8.05

TABLE I

Results of	of 4	Analyses	of	Coordination	Compounds
------------	------	----------	----	--------------	-----------

4-Butyrolactam, C_3H_6CONH , product of Fluka A.G., was redistilled and dried over a molecular sieve. 8-Caprylactam, $C_7H_{14}CONH$, product of BASF, was recrystallized from acetone, water, and benzene and dried at 50°C under vacuum.

Preparation of Complexes

The coordination compounds of scandium perchlorate, nitrate, chloride, and bromide were prepared by dissolution of 0.01 mol of a scandium salt in 30 ml of triethylformate, and the solution was heated to 50° C for approx. 15 minutes. To the solution, 0.06 mol of lactam dissolved in benzene was added. Crystalline compounds with 4-butyrolactam were obtained after evaporation of a part of the solvent under vacuum. The compounds with 8-carpylolactam were precipitated from the solution by ether, washed, and dried in the same way as the coordination compounds with 4-butyrolactam. The thiocyanate complexes were produced by addition of the benzene solution of 0.06 mol of lactam to the ether solution containing 0.01 mol of scandium thiocyanate. The complex with 4-butyrolactam was separated directly, that with 8-caprylolactam was separated very slowly after several hours standing.

Analytical

The scandium content was determined complexometrically⁹. The other elements were determined by elemental analysis. In addition, in complexes with 4-butyrolactam the anion content was established. The perchlorate and nitrate ions were determined by alkalimetry after dissolving the complex in water and passing it through the ion exchanger (Dowex 50) in the H⁺ cycle. The chloride, bromide, and thiocyanate anions were determined by potentiometric titration of aqueous solution with silver nitrate.

%	Ν	% Other elements		% Anions		
calc.	found	calc.	found	calc.	found	
9.84	9.74	12.5	13·2 ^a	35.0	35-2	
17.08	16.86			28.3	29.0	
11.37	11.09	21.6	21.6^{a}	21.6	20.9	
10.55	9.65	30.1	$30 \cdot 8^b$	30.1	29.9	
17.52	17.54	17.25	17.23^{c}	31.1	32.0	
7.06	6.84	9.75	10.03 ^a			
11.95	11.45					
7.81	7.83	14.65	14·86 ^a			
7.06	6.97	24.2	25·1 ^b	MARAAA V	—	
2.25	11.96	12.37	$13 \cdot 5^c$			

TABLE I

(continued)

^a Chlorine, ^b bromine, ^c sulphur.

Physico-Chemical Measurements

The infrared spectra were measured in KBr pellets with use of spectrograph Perkin-Elmer 325, over a range of 200-4000 cm⁻¹. The X-ray measurements involving the Debye-Scherrer method were carried out on diffractograph Geigerflex (Rigaku-Denki, Japan), CoK_a, Fe filter in a region of 2 to 30° . The melting points were established on a heated microscope stage Boetius (Küstner). The molecular weight was determined by conventional cryoscopic method in nitrobenzene. The conductivity measurements of 0.001 water, N,N-dimethylformamide, and nitrobenzene solutions at 25° C were made using the RLC bridge Tesla BM 401 E (Tesla).

Behaviour of the substances during heating was followed by TGA, DTA, and by using apparatus described in previous papers¹⁰. The temperature increase was linear and amounted to $7^{\circ}C/min$.

RESULTS AND DISCUSSION

As follows from analytical results (Table I) the complex compounds of the following composition were obtained in the reaction of scandium hydrate salts with 4-butyro-lactam and 8-caprylolactam under given conditions: $[Sc(C_3H_6CONH)_6](ClO_4)_3$ (*I*), $[Sc(C_3H_6CONH)_5(NO_3)](NO_3)_2$ (*II*), $[Sc(C_3H_6CONH)_4Cl_2]Cl$ (*III*), $[Sc(C_3H_6.CONH)_6]Br_3$ (*IV*), $[Sc(C_3H_6CONH)_4(SCN)_2]SCN$ (*V*), $[Sc(C_7H_{14}CONH)_6]$. . (ClO₄)₃ (*VI*), $[Sc(C_7H_{14}CONH)_5(NO_3)](NO_3)_2$ (*VII*), $[Sc(C_7H_{14}CONH)_4Cl_2]Cl$ (*VIII*), $[Sc(C_7H_{14}CONH)_5Br]Br_2$ (*IX*), $[Sc(C_7H_{14}CONH)_4(SCN)_2]SCN$ (*X*).

The Debye–Scherrer method shows that all the compounds prepared are crystalline substances of low symmetry.

2572

TABLE II

Characteristic Vibration of the C=O Group in Infrared Spectra

	$v_{\rm C} = c$			
Compound	free lactam	coordinated lactam	$\Delta v_{C=C}, cm^{-1}$	
Ι	1 682	1 640	42	
II	1 682	1 635	- 47	
III	1 682	1 635	47	
IV	1 682	1 635	<u> </u>	
V	1 682	1 640	-42	
VI	1 654	1 615	-39	
VII	1 654	1 615	- 39	
VIII	1 654	1 610	44	
IX	1 654	1 610	44	
Х	1 654	1 610	44	

TABLE III

Conductivity Measurement and Determination of Molecular Weight

	$\Lambda, \Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}$			Molecular weight		Number
Compound [–]	water	dimethyl- formamide	nitrobenzene	calc.	found	- of particles in the solution
I	412	203	69.4	854	225	4
II	400	128	1.1	657	156	4
III	406	69				_
IV	440	163				
V	425	137		—		
VI	450	222	69.6	1 191	286	4
VII	408	163	0 .6	937	250	4
VIII	400	78				—
IX	433	162				_
X	395	155		—		

In the infrared spectra of the compounds achieved, frequencies corresponding to vibrations of the C=O group of lactams (Table II) were primarily examined. A characteristic shift of the frequency towards a lower value in the bound lactam points, in comparison with free lactam, to the coordination of the ligand by means

Constant	Weig	ht loss ^a	Melting point ^b	Outset of decomposition
Compound –	calc.	found	°C	
Ι	9-19	c	182	200
П	89.5	c	77	140
III	86·0	85.0	185	180
IV	91-3	90 .6	105	120
V	87.7	87.6	147	140
VI	94.2	c	170	220
VII	92.6	c	135	150
VIII	90.4	89.6	209	200
IX	93-0	92.4	124	180
X	91.2	88.6	115	180

TABLE IV Results of Thermal Analysis

^a Corresponds to the formation of Sc_2O_3 , ^b with a precision of $\pm 2^{\circ}C$, ^c in the explosive course of the decomposition, the loss of weight was not measurable.

The compounds II and VII may be assumed to have their NO_3^- ions either coordinated in the inner coordination sphere and likewise bonded as anion in the outer sphere. The coordination number of the scandium ion is completed to six by the NO_3^- ligand. Analogously, completion of the coordination number of the scandium ion by the coordinated anion may be assumed also with other compounds for which less than six molecules of lactam were found. It was not possible to find a direct proof for this assumption from the infrared spectra.

The results of conductivity and cryoscopic measurements are summarized in Table III. In an aqueous solution, all the prepared substances dissociate as 1 : 3 electrolytes and owing to a great affinity of the scandium ion to water, a complete decomposition of the complex can be assumed. Likewise analytical determinations of anions (Table I) confirm that none of the anions is bonded in the aqueous solution in the inner complex sphere. In N,N-dimethylformamide the perchlorate complexes only

(I and VI) dissociate as 1:3 electrolyte, whereas the nitrate, bromide, and thiocyanate complexes (II, IV, V, VII, and X) dissociate as 1:2 electrolytes and the chlorine complexes (III and VIII) as 1:1 electrolytes¹². This dissociation is in most cases in accordance with the assumed type of the anion bond in crystalline coordination compound.

In the least polar solvent, nitrobenzene, the measurement was largely limited by a very low solubility of the substances examined so that the conductivity and cryoscopic measurements could be made with perchlorate and nitrate complexes only. Compounds I and VI dissociate in nitrobenzene as 1:3 electrolytes and in view of the fact that molecular weights, determined cryoscopically, point to the decomposition into 4 particles, a conclusion may be made that dissolution of the substances quoted takes place in nitrobenzene under a simultaneous dissociation according to equation

$$[ScL_6](ClO_4)_3 = [ScL_6]^{3+} + 3 ClO_4^-,$$

where L = lactam. The nitrate complexes behave in nitrobenzene as nonelectrolytes, but the cryoscopic determination of the molecular weight suggests a decomposition into 4 particles. Dissociation of these complexes in nitrobenzene can be then expressed by

$$[ScL_{5}(NO_{3})](NO_{3})_{2} = [ScL_{2}(NO_{3})_{3}] + 3L$$

Fig. 1

The coordination number of the scandium ion can be then in this case completed to six either by coordination of the solvent molecule³, or by a double-bonded nitrate ligand.

With respect to the possible utilization in the polymerizations of lactams, it was of interest to examine behaviour of the prepared substances during heating. The course of thermal decomposition shows (Fig. 1) that the compounds in vestigated may be divided into two groups. The first group comprises salts which have an anion with oxidation effects-perchlorates (I and VI) and nitrates (II and VII). These compounds decompose virtually at once and with explosion at temperatures about 200°C (Table IV). The most stable of them is the perchlorate complex with 8-caprylolactam (VI), which is stable approx. up to 220°C.

The second group includes complexes whose anion has no oxidation effects, *i.e.* chloride (*III* and *VIII*), bromide (*IV* and *IX*), and thiocyanate (*V* and *X*) complexes. In these compounds a stepwise decomposition takes place and the thermogravimetric curves (Fig. 1) show delays which point to the course of decomposition inseveral stages. Weight losses correspond in some cases to the formation of complexes of a lower coordination number (for instance, loss of weight of $[Sc(C_7H_{14}CONH)_4.$ (SCN)₂]SCN, amounting to 18% at 350°C, corresponds to the value calculated for the loss of one molecule of lactam), but formation of defined intermediate products has not been proved.

At higher temperature, all the compounds decompose to form Sc_2O_3 . The weight loss found is in agreement with the calculated value.

Differential thermal analysis made it possible to find a strong exothermic effect within a temperature range of 500 to 600° C, when combustion of the rests of an organic ligand by means of air oxygen takes place. The explosive decomposition of the first group of complexes manifests itself likewise by a strong exothermic effect. Thermal effects during heating of complexes of the second group, except for the endothermic effect in the course of melting, are not too distinct.

The difference in size of the lactam ring (5-membered and 9-membered rings for 4-butyrolactam and 8-caprylolactam, respectively), has no effect, except for bromide complexes, on the composition of the complexes; likewise the shift of frequency of the C=O bond during formation of the complexes is practically equal, only from the viewpoint of thermal stability, the complexes with 8-caprylolactam appear as somewhat more stable ones.

REFERENCES

- 1. Bohumovsky O., Jain S. C., Rivest R.: Can. J. Chem. 43, 2618 (1965).
- 2. Madan S. K., Denk H. H.: J. J. Inorg. Nucl. Chem. 27, 1049 (1965).
- 3. Madan S. K., Miller W. V.: J. Inorg. Nucl. Chem. 30, 2785 (1968).
- 4. Madan S. K., Denk H. H.: Inorg. Chem. 6, 421 (1967).

- 5. Kubánek V., Králíček J., Kondelíková J.: Sb. Vys. Šk. Chemicko-Technol. Praze C 18, 79 (1972).
- 6. Madan S. K., Sturr J. A.: J. Inorg. Nucl. Chem. 30, 1669 (1967).
- 7. Králiček J., Kubánek V., Kondelíková J.: Czech. 145 826 (1970).
- 8. Hart D. M., Davis B. J.: J. Inorg. Nucl. Chem. 30, 2263 (1968).
- 9. Přibil R.: Komplexometrie, p. 47. Published by SNTL, Prague 1957.
- 10. Kůtek F.: This Journal 31, 4239 (1966).
- 11. Komisarova L. N., Pushkina G. J., Terenin E. G.: Zh. Neorg. Khim. 12, 2586 (1967).
- 12. Harris C. M., Nyholm R. S.: J. Chem. Soc. 4375 (1956).

Translated by J. Hejduk.

2576